Les applications du Deep Learning
Sélectionnez un chapitre
C’est une branche du Machine Learning très prometteuse. Que ce soit pour reconnaître des visages sur des images, analyser des textes et les interpréter automatiquement ou encore avoir des voitures qui conduisent toutes seules, les applications du Deep Learning sont nombreuses.
Deep Learning
Les réseaux de neurones artificiels
Ce genre de réseau est défini par des couches de neurones, celles-ci étant interconnectées.
Définissons les grandes étapes du Deep Learning :
– A chaque neurone constituant du réseau est affecté un coefficient.
– Chaque donnée d’entrée (input) va être multipliée par ce coefficient et va appliquer une certaine fonction à ce résultat.– Si la somme obtenue est négative, le neurone ne s’active pas, car la donnée n’est pas intéressante.
Si cette somme est positive, alors le neurone va envoyer l’information au neurone de la couche suivante (hidden layer), jusqu’à ce que la donnée ultime atteigne le dernier neurone. On aura alors un résultat final (output).
La spécificité du Deep Learning
La particularité du Deep Learning réside surtout dans la capacité du réseau de neurones à apprendre de ces erreurs (même lorsque le résultat est négatif). Cette autonomisation dans le traitement des données brutes fournies à l’algorithme permet aux Data Scientists de se passer du nettoyage des données, étape très chronophage de tout projet Machine Learning.
Dans la pratique, les langages et les frameworks de Deep Learning sont des outils utilisés en programmation pour faciliter l’implémentation de l’architecture des réseaux de neurones : déterminer le nombre de couches d’un réseau et le nombre de neurones par couches.
Les applications du Deep Learning
La reconnaissance faciale
Les yeux, le nez, la bouche, tout autant de caractéristiques qu’un algorithme de Deep Learning va apprendre à détecter sur une photo. Il va s’agir en premier lieu de donner un certain nombre d’images à l’algorithme, puis à force d’entraînement, l’algorithme va être en mesure de détecter un visage sur une image.
La détection d’objets
Sur une image complexe où il y a plusieurs éléments, les algorithmes de détection d’objets vont être maintenant capables d’identifier et de localiser au pixel près un élément ou une personne. 800 millions d’images sont uploadées chaque jour sur Facebook : son algorithme Deep Learning est effectivement capable d’identifier telle ou telle personne sur une photo dès lors qu’elle est uploadée.
Le Natural Language Processing
Le Natural Language Processing est une autre application du Deep Learning. Son but étant d’extraire le sens des mots, voire des phrases pour faire de l’analyse de sentiments. L’algorithme va par exemple comprendre ce qui est dit dans un avis Google, ou va communiquer avec des personnes via des chatbots.
La lecture et l’analyse automatique de textes est aussi un des champs d’application du Deep Learning avec le Topic Modeling : tel texte aborde tel sujet.
Un exemple
Le Go est un jeu de plateau chinois caractérisé par sa profondeur stratégique. Développé par l’entreprise britannique Deep Mind rachetée par Google en 2014, l’algorithme Alpha Go a battu en 2017 le champion du monde. Ce jeu était pourtant un des derniers pour lesquels l’humain était meilleur que la machine. Non content d’avoir battu le champion du monde, les développeurs de cet algorithme l’ont encore amélioré : leur dernière version, Alpha 0, a finalement appris le Go en jouant contre des versions de lui-même !
Ainsi, même sans aucune stratégie humaine programmée au départ, cet algorithme est arrivé à performer en Deep Learning, donnant des perspectives toujours plus intéressantes pour les développeurs.
Articles recommandés
Intelligence Artificielle
La vraie différence entre Machine Learning & Deep Learning | Jedha
Machine Learning & Deep Learning sont devenus des termes extrêmement utilisés dans le cadre de nos activités, avec des applications toujours plus nombreuses. Lorsque l’on parle de Deep Learning, nous parlons d’algorithmes capables de mimer les actions du cerveau humain grâce à des réseaux de neurones d’où le terme d’Intelligence Artificielle.
Blog
Qu'est-ce que le Deep Learning ? Définition, Outils, Applications
Le Deep Learning est un domaine qui se développe de plus en plus et qui est très utilisé en entreprise. Nos formations en Data Science vous permettent de devenir autonome sur cette notion de Deep Learning.
Intelligence Artificielle
Les 6 meilleures formations en Machine Learning
Vous souhaitez vous reconvertir dans la Data ? Découvrez les meilleures offres de formation en Machine Learning pour réussir votre projet professionnel !
Intelligence Artificielle
Méthodes de Machine Learning | Jedha
Différentes méthodes de travail existent en Machine Learning, découvrez ce qu'est une méthode Machine Learning, et comment évaluer son modèle ML.
Data Science
Classement des 5 meilleurs masters en Data Science en 2023
Vous rêvez de devenir data scientist ? Découvrez notre classement des 5 meilleurs masters en Data Science en France.
Intelligence Artificielle
Machine Learning : définition, algorithmes et cas d’usage
Vous réfléchissez à vous former en Machine Learning ? Vous voulez comprendre comment fonctionne l’apprentissage automatisé ? Jedha vous dit tout ce qu’il faut savoir sur cette branche de l’Intelligence Artificielle en plein boom !