Algorithme Q-Learning : apprentissage par renforcement
Sélectionnez un chapitre
L'apprentissage par renforcement ou reinforcement learning est l'une des méthodes de Machine Learning les plus utilisées dans l'univers de la Data science, tel que l'algorithme KNN, également étudié. Cette technique permet à l'ordinateur de réaliser des tâches complexes de façon autonome. La machine apprend de ses expériences grâce à un système de pénalité ou de récompense. L'apprentissage par renforcement fait intervenir un algorithme à fort potentiel : le Q-learning. Chez Jedha nous vous enseignons l'essentiel à savoir sur l'algorithme Q-Learning.
Qu'est-ce que le renforcement learning ?
Le renforcement learning ou apprentissage par renforcement est une technique de machine learning qui consiste à entraîner des modèles d'intelligence artificielle afin de les rendre plus autonomes.
Il s'agit d'une science de la prise de décision. Avec cette méthode d'apprentissage, l'agent IA apprend à atteindre un objectif dans un environnement complexe et incertain. L'agent interagit donc avec un environnement pour trouver une solution au problème qui lui est présenté.
Pour y parvenir, l'ordinateur apprend de ses erreurs en essayant plusieurs combinaisons différentes. L'agent IA reçoit à chaque tentative une punition ou une récompense en fonction de l'action effectuée. Il est programmé pour maximiser les récompenses suivant les règles fixées par le programmeur. En revanche, l'agent IA ne reçoit aucun indice ou aucune instruction lui suggérant quelle action effectuer pour accomplir la tâche qui lui est demandée.
L'apprentissage par renforcement est aujourd'hui considéré comme l'une des méthodes les plus efficaces pour faire appel à la créativité des machines. L'apprentissage par renforcement est adapté pour les problèmes qui nécessitent des compromis entre la quête de récompense à long terme et celle à court terme.
Qu'est-ce que le Q-learning ?
Le Q-learning est l'un des algorithmes de renforcement learning les plus utilisés.
Il permet de comprendre rapidement le mécanisme d'apprentissage de nombreux modèles. Il permet également d'identifier la meilleure action à entreprendre dans un contexte bien précis.
Le Q-learning est capable d'effectuer des actions aléatoires sans tenir compte de la politique actuelle. Cet algorithme cherche surtout à apprendre une politique qui maximise la récompense totale. Le Q-learning met en évidence l'utilité de l'action à accomplir pour obtenir une récompense. C'est une technique très recommandée pour commencer l'apprentissage de renforcement.
Pour apprendre à jouer à un jeu par exemple, l'algorithme de Q learning va commencer par effectuer un choix entre l'exploration et l'exploitation des données. L'agent IA peut opter pour l'exploration s'il n'a aucune expérience. Dans le cas contraire, il optera pour l'exploration des données. Une fois qu'il a effectué une action, l'agent passe à l'étape suivante où il prend de nouvelles décisions. Au cours de son apprentissage, l'agent IA progresse lentement en fonction de l'expérience acquise.
Utilisation du Q learning ?
De nombreuses start-ups innovantes se servent aujourd'hui de l'apprentissage par renforcement pour optimiser l'utilisation des équipements et des machines. Le renforcement Learning est très utilisé dans le domaine des jeux vidéo. Grâce à son fort potentiel, le Q-learning peut être utilisé dans de nombreux domaines.
La fouille de texte
Le texte mining ou la fouille de texte constituent également un domaine d'application du reinforcement learning. Pour développer un système capable de produire des résumés de longs textes, les chercheurs d'une entreprise spécialisée dans le cloud computing ont trouvé une solution : combiner à la fois le renforcement learning et un modèle avancé de génération de texte contextuel. À partir de données exploitées, l'agent IA peut produire de façon autonome de petits textes cohérents.
La robotique
En automatisation industrielle et en robotique, le Q Learning permet à la machine de créer un système de contrôle adaptatif. L'action de l'agent IA permet à la machine d'apprendre de son propre comportement et de son expérience.
La santé
Le domaine de la santé emploie des applications de renforcement learning. Q learning est utilisé pour les essais cliniques, l'optimisation de la politique de traitement des maladies et pour le dosage de médicaments.
Les finances
Plusieurs grandes entreprises du secteur financier utilisent aujourd'hui des algorithmes de machine learning et de renforcement learning. Le but est d'arriver à améliorer à la fois leur investissement de capitaux propres, ainsi que leur activité de trading. En 2017, JP Morgan a ainsi annoncé son projet d'automatiser l'exécution des gros ordres de trading. Cette décision leur permettra d'exécuter rapidement leur transaction.
Comment apprendre le Q learning ?
Évoluer dans le secteur de l'apprentissage automatique et de l'intelligence artificielle implique une parfaite maîtrise des différents algorithmes de Machine learning.
Il existe aujourd'hui de nombreuses formations spécialisées pour acquérir plus de compétences dans le domaine du renforcement Learning. Les formations Data que nous proposons chez Jedha sont les plus adaptées pour les personnes qui souhaitent apprendre le Q learning.
Ce sont des formations en Data analyse, data engineering, data sciences, cybersécurité, etc. Jedha offre un accompagnement à ses élèves dans la réalisation de leur projet professionnel. Notre but est de les amener à être plus autonomes afin d'apporter une réelle valeur ajoutée à leur entreprise. Les formations Jedha permettent aux étudiants d'apprendre rapidement le Q learning afin de lancer leur carrière dans la data ou monter une start-up.
Q-learning est l'une des techniques d'apprentissage les plus populaires. À partir des données qui lui sont fournies, cet algorithme aide de nombreuses entreprises dans l'exécution des tâches et dans les prises de décisions. Les formations Data que l'on propose chez Jedha font partie des formations les plus recommandées pour apprendre rapidement le Q learning. Les étudiants ont la possibilité de suivre les cours à distance ou en présentiel en fonction de leur emploi du temps !
Articles recommandés
Blog
Qu'est-ce que le Deep Learning ? Définition, Outils, Applications
Le Deep Learning est un domaine qui se développe de plus en plus et qui est très utilisé en entreprise. Nos formations en Data Science vous permettent de devenir autonome sur cette notion de Deep Learning.
Intelligence Artificielle
Tout savoir sur le Reinforcement Learning | Jedha
Le Reinforcement Learning est une branche de l'Intelligence Artificielle (IA) dans laquelle la machine apprend de ses expériences à travers un processus essai-erreur.
Intelligence Artificielle
Intelligence artificielle : métiers et débouché de l'IA | Jedha
Guide sur les métiers et les débouchés de l'intelligence artificielle, un secteur prometteur sur le marché du travail en France.
Intelligence Artificielle
Machine learning Engineer : comment réussir votre reconversion ?
Machine learning Engineer, le métier parfait pour une reconversion professionnelle ! Il est en pleine évolution et le salaire proposé est très intéressant. Le salaire moyen varie en effet de 46 070 à 49 479 euros par an et peut très vite augmenter et atteindre 70 000 euros par an si le professionnel est un senior.
Blog
Par où commencer pour apprendre le Machine Learning ?
Le Machine Learning, composant essentiel des Data Sciences, est devenu très populaire. Il existe depuis que nos ordinateurs sont assez puissants pour traiter l’énorme masse de données nécessaires au bon fonctionnement de ces algorithmes. Etre capable de comprendre et utiliser ces modèles sont donc devenues des compétences très recherchées par les recruteurs. Cet article va vous donner les clés pour commencer votre apprentissage du Machine Learning.